

Conservation Science & Practice in Cambodia SFS 3801

Syllabus 4 credits

The School for Field Studies (SFS) Center for Environmental Research in Conservation and Development Studies Siem Reap, Cambodia

This syllabus may develop or change over time based on local conditions, learning opportunities, and faculty expertise. Course content may vary from semester to semester.

www.fieldstudies.org © 2023 The School for Field Studies

COURSE CONTENT SUBJECT TO CHANGE

Please note that this is a copy of a recent syllabus. A final syllabus will be provided to students on the first day of academic programming.

SFS programs are different from other travel or study abroad programs. Each iteration of a program is unique and often cannot be implemented exactly as planned for a variety of reasons. There are factors which, although monitored closely, are beyond our control. For example:

- Changes in access to or expiration or change in terms of permits to the highly regulated and sensitive environments in which we work;
- Changes in social/political conditions or tenuous weather situations/natural disasters may require changes to sites or plans, often with little notice;
- Some aspects of programs depend on the current faculty team as well as the goodwill and generosity of individuals, communities, and institutions which lend support.

Please be advised that these or other variables may require changes before or during the program. Part of the SFS experience is adapting to changing conditions and overcoming the obstacles that they may present. In other words, this is a field program, and the field can change.

Course Overview

The field of conservation is focused on protecting biological diversity, including ecosystems, species, and genes, through promoting processes, both ecological and social, that support biodiversity. Conservation science is by nature an interdisciplinary field, where concepts and research in ecology, environmental science, taxonomy, and evolution inform the practical applications of social, economic, and political sciences. Conservation is as much about managing wildlife as it is about managing people. Dramatic changes are occurring in almost every corner of the world; many changes are anthropogenic – caused by 'us'. Our activities are changing atmospheric gases and contributing to climate change. We are overexploiting natural resources, polluting ecosystems, and causing habitat destruction at such a high rate that many scientists believe that we have entered the sixth mass extinction of life on Earth. The overarching goal of this course is to make students aware of the enormous responsibility humans have as stewards of the natural environment, and to provide them with the concepts, tools, and incentives to affect conservation of the natural environment.

While Cambodia is developing rapidly, its biodiversity is being degraded at an alarming rate. Even though this country supports tremendous biodiversity, biological data is very limited. Biodiversity cannot be effectively conserved without understanding current environmental status, fundamental ecological relationships, and the effectiveness of conservation approaches. This kind of knowledge is urgently needed for sustainable biodiversity conservation in this region. There are numerous conservation initiatives and efforts, however, often these are short term and the outcomes have not been evaluated.

This course will provide background information on the current status and trends of biodiversity, knowledge on ecological concepts, and tools to assess conservation approaches. While the course will expose students to broad issues that face the entire planet, we will focus on practical aspects of the course on local case studies. Students will learn concepts in conservation science, both theoretical and practical, from lectures and fieldtrips. Throughout the semester, students will be exposed to a wide range of local conservation practices through discussions, direct observations, and assessments of various conservation programs that are being implemented and co-managed by diverse stakeholders including: government agencies, private companies, local and international organizations, and villagers. The course will provide students with a background to engage in the 'conservation conversation'. By undertaking field trips to various conservation project sites, students gain first-hand information about different conservation challenges and approaches from diverse stakeholders such as decision makers; park rangers; educators; and conservation activists who are active in the conservation field in Cambodia.

Learning Objectives

Students will draw on observations and scientific evidence to make decisions about the efficacy of conservation practices. Students will be able to:

- 1. Relate the major principles of ecology and evolution in conceptualizing and practically applying the science of conservation biology;
- 2. Identify the current questions being addressed by conservation research in both global and local perspectives;
- 3. Define the major threats to biological diversity and identify both direct and indirect drivers of the threats;
- 4. Identify the current political and economic concerns of conservation, the actors involved, and their roles and methods in policy formation; and
- 5. Employ field research methods and analytical tools, including qualitative and quantitative methods to address ongoing conservation issues.

Assessment

The evaluation breakdown for the course is as follows:

Assessment Item	Value (%)
Interpreting a Scientific Paper and Writing an Abstract	5
Field Exercises (FEXs)	
Citizen Science Bat Census	10
Elephant Ecosystem Engineers	10
Stakeholder Scenario Activity	10
Conservation Project Grant Proposal	15
Grant Proposal Presentation	5
Class and Field Participation	10
Final Exam	35
TOTAL	100

Interpreting a Scientific Paper and Writing an Abstract (5%)

This assignment aims to provide the training required to understand and critique a scientific paper. Students will learn to understand and articulate the qualities that produce a high-quality publication, such as content, structure, use of appropriate language and compelling or practical findings. Students will be divided into five groups of two and one group of three and will be given a scientific paper, with no Abstract, and asked to discuss the content and structure of the paper to the class. Each group will then be given one hour to write a concise abstract of the paper (around 250-300words) ensuring that they meet the criteria discussed in class.

Field Exercises (20%)

Two field exercises (FEXs)will be assigned during the semester.

- For the first FEX, you will conduct a study of bats in the Siem Reap Botanical Gardens as part of your urban conservation and citizen science section of the syllabus. The focus of this report will be to critique two different count methods and design a monitoring program that would yield reliable/comparable data over time (including methods, sampling effort and frequency).
- For the second FEX you will write a report on the important role that elephants play in ecosystem health, specifically as ecosystem engineers. You will spend a day observing elephants foraging in the forest at Elephant Valley Project to guide you with this essay-style report.

Stakeholder Scenario Activity (10%)

This assessment requires no prior preparation. Students will be given a fictitious land use scenario and assigned the role of a stakeholder. Students will then come up with a position on the land use scenario from the perspective of their assigned stakeholder and debate with other stakeholders.

Conservation Project Grant Proposal and Presentation (20%)

For this project you will be working in groups. You will be required to conceptualize a conservation plan for a local area in Cambodia. Each group will visit and choose from one project from Angkor Centre for Conservation and Biodiversity (ACCB). Students will focus on grant proposals aimed at specific species, entire ecosystems, particular habitats, ecotourism, environmental education or the human-wildlife interface. Early in the semester you will meet and interview representatives involved in these conservation initiatives. This assignment requires each student group to write a grant proposal to submit for funding for the project implementation (US\$20,000). The proposal will include a detailed physical description of the area, a list of conservation objectives (saving a species, preventing habitat degradation, improving facilities, etc.), a plan to implement measures that fulfill the objectives, a method to monitor and evaluate the project implementation and its outcomes, and a plan to involve stakeholders. The primary goal is to understand the processes of grant proposal writing as well as to learn how to coordinate the many actors and conditions conservationists often face when implementing a plan or writing a grant proposal. Teamwork will be essential for this project. Each group will make a 15-minute oral and visual presentation to their classmates about their respective conservation project.

Final Exam (35%)

You will have one final exam at the end of semester and you will be given time to study for this; a class period will be designated as 'review' session to recap the semesters lessons and give students a chance to gain feedback from their professor. You will be examined on what you have been exposed to in class (lectures, discussions, and readings) and during field trips.

А	95.00 - 100.00%	B+	86.00 - 89.99%	C+	76.00 - 79.99%	D	60.00 - 69.99%
A-	90.00 - 94.99%	В	83.00 - 85.99%	С	73.00 - 75.99%	F	0.00 - 59.99%
		B-	80.00 - 82.99%	C-	70.00 - 72.99%		

Grading Scheme

General Reminders

Readings – Each student will select one reading from the list that they will summarize and share with the class before each relevant lecture. All students are expected to make notes on the paper being presented, for reference during exams, and where possible the student will propose one question to the class for a 5-minute discussion to begin each lecture. All readings are available as PDFs on the Student Drive or from a common laptop. The reading list might be updated or changed during the semester.

Plagiarism – using the ideas or material of others without giving due credit – is cheating and will not be tolerated. A grade of zero will be assigned for anyone caught cheating or aiding another person to cheat either actively or passively. All assignments unless specifically stated should be individual pieces of work.

Deadlines – Deadlines for written and oral assignments are instated to promote equity among students and to allow faculty ample time to review and return assignments before others are due. As such, deadlines are firm; extensions will only be considered under extreme circumstances. Late assignments will incur a penalty of 10% of your grade for each day you are late. After two days past the deadline assignments will not be accepted. Assignments will be returned after a one-week grading period.

Participation – Since we offer a program that is likely more intensive than what you might be used to at your home institution, missing even one lecture can have a proportionally greater effect on your final grade because there is little room to make up for lost time. Participation in all components of the program is mandatory because your actions can significantly affect the experience you and your classmates have while at SFS. Therefore, it is important that you are prompt for all activities, bring the necessary equipment for field exercises and Directed Research, and simply get involved.

Course Content

CSP

8

•

•

Νο	Title and outline	Туре	Time (hrs)	Required Readings
CSP 1	 Course Introduction Nature in an era of global change Anthropocene 	L	1.5	
CSP 2	 Introduction to Biodiversity Definition of biological diversity Values of biodiversity Threats to biodiversity Endangered species 	L; FC	4.5	Sodhi (2004)
CSP 3	 Introduction to Conservation Perspectives What is conservation science? Why is conservation needed? Conservation stakeholders in Cambodia Grant proposal assignment 	L	2.0	Kareiva and Marvier (2012)
CSP 4	 Conservation Planning and Priorities Global geographic priorities Ecoregions for conservation planning Conservation efforts in Cambodia Conservation challenges and opportunities 	L; FC	4.5	Brooks et al. (2006) Perry and Gillespie (2019)
CSP 5	 Urban ecology& Citizen science What is urban ecology? Why is urban conservation needed? Conservation stakeholders in Cambodia Introduction to Bats 	L; FC	8.0	Ooi (2009)
CSP 6	 Field research techniques Why do we monitor? Monitoring techniques Issues faced in the field 	L; FC	10.0	Buchholz (2007)
CSP 7	Conservation Strategies Payment for Ecosystem Services Protected Area Management In situ vs. ex situ conservation approaches 	L	4.5	Spiteri & Nepalz (2006) Sunderland et al. (2013)
	 Deciphering a scientific paper Understand & critique a scientific paper 	L	2.5	

Type: D: Discussion, FC: Field Components, GL: Guest Lecture, L: Lecture, O: Orientation

Develop understanding of content,

organization, first disclosure, valid

publication and appropriate language Methods for writing a concise Abstract

Νο	Title and outline	Туре	Time (hrs)	Required Readings
CSP 9	 Elephant ecology and conservation Ecological engineers and keystone species Threats to Asian elephants 	L; FC	4.0	Jones et al. (1994)
CSP 10	Elephant health, welfare, social behavior & cognition		4.0	
CSP 11	 Tonle Sap Biodiversity Species richness and abundance Morphological diversity Fishing-down-the-food-web model Tragedy of the Commons 	L; FC	6.0	Campbell et al. (2006) Pauly et al. (1998)
CSP 12	 Wetland Ecology & Forest Restoration Ecosystem services in a wetland Forest restoration research methodologies 	L; FC	4.5	Taillardat et al. (2020)
CSP 13	 The illegal wildlife trade in South-East Asia Corruption in conservation Hindering conservation efforts Biodiversity loss What species are targeted? Influence of socioeconomics Impact on ecosystems 	L	1.5	Lim et al. (2022)
CSP 14	 The Future of Conservation Coupling human-nature systems Discussion and survey 	L	1.0	Fletcher et al. (2021)
	Total contact hours			

Reading List

- Brooks, T.M., Mittermeier, R.A., de Fonseca, G.A.B., Gerlach, J., Hoffman., M., Lamoreux, J.F., Mittermeier, C.G., Pilgrim, J.D. & Rodrigues, A.S.L (2006). Global Biodiversity Conservation Priorities. Science, 313, p 58.
- 2. Buchholz, R. (2007). Behavioural biology: an effective and relevant conservation tool. Trends in Ecology & Evolution, 22(8), 401-407.
- 3. Campbell, I. C., Poole, C., Giesen, W. & Valbo-Jorgensen, J. (2006). Species diversity and ecology of Tonle Sap Great Lake, Cambodia. Aquatic Sciences, 68(3), 355-373.
- Fletcher, M. S., Hamilton, R., Dressler, W., & Palmer, L. (2021). Indigenous knowledge and the shackles of wilderness. Proceedings of the National Academy of Sciences, 118(40), e2022218118.
- 5. Jones, C. G., Lawton, J. H. & Shachak, M. (1994). Organisms as ecosystem engineers. In Ecosystem management (pp. 130-147). Springer New York.
- 6. Kareiva, P., & Marvier, M. (2012). What is conservation science?BioScience,62(11), 962-969.
- 7. Ooi, G. L. (2009). Challenges of sustainability for Asian urbanization. Current opinion in environmental sustainability,1(2), 187-191.
- 8. Lim, T., Davis, E. O., Crudge, B., Roth, V., & Glikman, J. A. (2022). Traditional Khmer Medicine and its role in Wildlife Trade in modern-day Cambodia.
- 9. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. (1998). Fishing down marine food webs. Science, 279(5352), 860-863.
- Perry, N., & Gillespie, J. (2019). Restricting spatial lives? The gendered implications of conservation in Cambodia's protected wetlands. Environment and Planning E: Nature and Space,2(1), 73-88.
- 11. Sodhi, N. S., Koh, L. P., Brook, B. W., & Ng, P. K. (2004). Southeast Asian biodiversity: an impending disaster. Trends in Ecology & Evolution, 19(12), 654-660.
- 12. Spiteri, A., & Nepalz, S. K. (2006). Incentive-based conservation programs in developing countries: a review of some key issues and suggestions for improvements. Environmental Management, 37(1), 1-14.
- 13. Sunderland, T.C.H., Sayer, J.A. & Hoang, M.H.(2013).Introduction: evidence-based conservation from the Lower Mekong. Evidence-based Conservation Lessons from the Lower Mekong. Center for International Forestry Research, p 3-14.
- 14. Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K., & Friess, D. A. (2020). Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus, 10(5), 20190129.